Tickets to a lottery cost 1. There are two possible prizes: a 10 payoff with probability 1/50, and a 1,000,000 payoff with probability 1/2,000,000. What is the expected monetary value of a lottery ticket? When (if ever) is it rational to buy a ticket? Be precise—show an equation involving utilities. You may assume current wealth of $k$ and that $U(S_k)=0$. You may also assume that $U(S_{k+{10}}) = {10}\times U(S_{k+1})$, but you may not make any assumptions about $U(S_{k+1,{000},{000}})$. Sociological studies show that people with lower income buy a disproportionate number of lottery tickets. Do you think this is because they are worse decision makers or because they have a different utility function? Consider the value of contemplating the possibility of winning the lottery versus the value of contemplating becoming an action hero while watching an adventure movie.
Answer
Improve This Solution
View Answer