This exercise uses the function ${MapColor}$ and predicates ${In}(x,y)$, ${Borders}(x,y)$, and ${Country}(x)$, whose arguments are geographical regions, along with constant symbols for various regions. In each of the following we give an English sentence and a number of candidate logical expressions. For each of the logical expressions, state whether it (1) correctly expresses the English sentence; (2) is syntactically invalid and therefore meaningless; or (3) is syntactically valid but does not express the meaning of the English sentence.
-
Paris and Marseilles are both in France.
-
${In}({Paris} \land {Marseilles}, {France})$.
-
${In}({Paris},{France}) \land {In}({Marseilles},{France})$.
-
${In}({Paris},{France}) \lor {In}({Marseilles},{France})$.
-
-
There is a country that borders both Iraq and Pakistan.
-
${\exists\,c\;\;}$ ${Country}(c) \land {Border}(c,{Iraq}) \land {Border}(c,{Pakistan})$.
-
${\exists\,c\;\;}$ ${Country}(c) {:\;{\Rightarrow}:\;}[{Border}(c,{Iraq}) \land {Border}(c,{Pakistan})]$.
-
$[{\exists\,c\;\;}$ ${Country}(c)] {:\;{\Rightarrow}:\;}[{Border}(c,{Iraq}) \land {Border}(c,{Pakistan})]$.
-
${\exists\,c\;\;}$ ${Border}({Country}(c),{Iraq} \land {Pakistan})$.
-
-
All countries that border Ecuador are in South America.
-
${\forall\,c\;\;} Country(c) \land {Border}(c,{Ecuador}) {:\;{\Rightarrow}:\;}{In}(c,{SouthAmerica})$.
-
${\forall\,c\;\;} {Country}(c) {:\;{\Rightarrow}:\;}[{Border}(c,{Ecuador}) {:\;{\Rightarrow}:\;}{In}(c,{SouthAmerica})]$.
-
${\forall\,c\;\;} [{Country}(c) {:\;{\Rightarrow}:\;}{Border}(c,{Ecuador})] {:\;{\Rightarrow}:\;}{In}(c,{SouthAmerica})$.
-
${\forall\,c\;\;} Country(c) \land {Border}(c,{Ecuador}) \land {In}(c,{SouthAmerica})$.
-
-
No region in South America borders any region in Europe.
-
$\lnot [{\exists\,c,d\;\;} {In}(c,{SouthAmerica}) \land {In}(d,{Europe}) \land {Borders}(c,d)]$.
-
${\forall\,c,d\;\;} [{In}(c,{SouthAmerica}) \land {In}(d,{Europe})] {:\;{\Rightarrow}:\;}\lnot {Borders}(c,d)]$.
-
$\lnot {\forall\,c\;\;} {In}(c,{SouthAmerica}) {:\;{\Rightarrow}:\;}{\exists\,d\;\;} {In}(d,{Europe}) \land \lnot {Borders}(c,d)$.
-
${\forall\,c\;\;} {In}(c,{SouthAmerica}) {:\;{\Rightarrow}:\;}{\forall\,d\;\;} {In}(d,{Europe}) {:\;{\Rightarrow}:\;}\lnot {Borders}(c,d)$.
-
-
No two adjacent countries have the same map color.
-
${\forall\,x,y\;\;} \lnot {Country}(x) \lor \lnot {Country}(y) \lor \lnot {Borders}(x,y) \lor {}$
$\lnot ({MapColor}(x) = {MapColor}(y))$. -
${\forall\,x,y\;\;} ({Country}(x) \land {Country}(y) \land {Borders}(x,y) \land \lnot(x=y)) {:\;{\Rightarrow}:\;}{}$
$\lnot ({MapColor}(x) = {MapColor}(y))$. -
${\forall\,x,y\;\;} {Country}(x) \land {Country}(y) \land {Borders}(x,y) \land {}$
$\lnot ({MapColor}(x) = {MapColor}(y))$. -
${\forall\,x,y\;\;} ({Country}(x) \land {Country}(y) \land {Borders}(x,y) ) {:\;{\Rightarrow}:\;}{MapColor}(x\neq y)$.
-