Which of the following are correct?
-
${False} \models {True}$.
-
${True} \models {False}$.
-
$(A\land B) \models (A{\;\;{\Leftrightarrow}\;\;}B)$.
-
$A{\;\;{\Leftrightarrow}\;\;}B \models A \lor B$.
-
$A{\;\;{\Leftrightarrow}\;\;}B \models \lnot A \lor B$.
-
$(A\lor B) \land (\lnot C\lor\lnot D\lor E) \models (A\lor B\lor C) \land (B\land C\land D{:\;{\Rightarrow}:\;}E)$.
-
$(A\lor B) \land (\lnot C\lor\lnot D\lor E) \models (A\lor B) \land (\lnot D\lor E)$.
-
$(A\lor B) \land \lnot(A {:\;{\Rightarrow}:\;}B)$ is satisfiable.
-
$(A\land B){:\;{\Rightarrow}:\;}C \models (A{:\;{\Rightarrow}:\;}C)\lor(B{:\;{\Rightarrow}:\;}C)$.
-
$(C\lor (\lnot A \land \lnot B)) \equiv ((A{:\;{\Rightarrow}:\;}C) \land (B {:\;{\Rightarrow}:\;}C))$.
-
$(A{\;\;{\Leftrightarrow}\;\;}B) \land (\lnot A \lor B)$ is satisfiable.
-
$(A{\;\;{\Leftrightarrow}\;\;}B) {\;\;{\Leftrightarrow}\;\;}C$ has the same number of models as $(A{\;\;{\Leftrightarrow}\;\;}B)$ for any fixed set of proposition symbols that includes $A$, $B$, $C$.