Exercise 7.6 [deduction-theorem-exercise]
Prove each of the following assertions:
-
$\alpha$ is valid if and only if ${True}{\models}\alpha$.
-
For any $\alpha$, ${False}{\models}\alpha$.
-
$\alpha{\models}\beta$ if and only if the sentence $(\alpha {:\;{\Rightarrow}:\;}\beta)$ is valid.
-
$\alpha \equiv \beta$ if and only if the sentence $(\alpha{\;\;{\Leftrightarrow}\;\;}\beta)$ is valid.
-
$\alpha{\models}\beta$ if and only if the sentence $(\alpha \land \lnot \beta)$ is unsatisfiable.
Answer
Improve This Solution
View Answer