Exercise 10.17 [strips-translation-exercise]
Consider how to translate a set of action schemas into the successor-state axioms of situation calculus.
-
Consider the schema for ${Fly}(p,{from},{to})$. Write a logical definition for the predicate ${Poss}({Fly}(p,{from},{to}),s)$, which is true if the preconditions for ${Fly}(p,{from},{to})$ are satisfied in situation $s$.
-
Next, assuming that ${Fly}(p,{from},{to})$ is the only action schema available to the agent, write down a successor-state axiom for ${At}(p,x,s)$ that captures the same information as the action schema.
-
Now suppose there is an additional method of travel: ${Teleport}(p,{from},{to})$. It has the additional precondition $\lnot {Warped}(p)$ and the additional effect ${Warped}(p)$. Explain how the situation calculus knowledge base must be modified.
-
Finally, develop a general and precisely specified procedure for carrying out the translation from a set of action schemas to a set of successor-state axioms.